Breakdown of Heteroclinic Connections in the Analytic Hopf-Zero Singularity: Rigorous Computation of the Stokes Constant

Author:

Baldomá Inmaculada,Capiński Maciej J.,Guardia Marcel,Seara Tere M.

Abstract

AbstractConsider analytic generic unfoldings of the three- dimensional conservative Hopf-zero singularity. Under open conditions on the parameters determining the singularity, the unfolding possesses two saddle-foci when the unfolding parameter is small enough. One of them has one-dimensional stable manifold and two-dimensional unstable manifold, whereas the other one has one- dimensional unstable manifold and two-dimensional stable manifold. Baldomá et al. (J Dyn Differ Equ 25(2):335–392, 2013) gave an asymptotic formula for the distance between the one-dimensional invariant manifolds in a suitable transverse section. This distance is exponentially small with respect to the perturbative parameter, and it depends on what is usually called a Stokes constant. The nonvanishing of this constant implies that the distance between the invariant manifolds at the section is not zero. However, up to now there do not exist analytic techniques to check that condition. In this paper we provide a method for obtaining accurate rigorous computer-assisted bounds for the Stokes constant. We apply it to two concrete unfoldings of the Hopf-zero singularity, obtaining a computer-assisted proof that the constant is nonzero.

Funder

Universitat de Barcelona

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Engineering,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3