On Two Coupled Degenerate Parabolic Equations Motivated by Thermodynamics

Author:

Mielke AlexanderORCID

Abstract

AbstractWe discuss a system of two coupled parabolic equations that have degenerate diffusion constants depending on the energy-like variable. The dissipation of the velocity-like variable is fed as a source term into the energy equation leading to conservation of the total energy. The motivation of studying this system comes from Prandtl’s and Kolmogorov’s one- and two-equation models for turbulence, where the energy-like variable is the mean turbulent kinetic energy. Because of the degeneracies, there are solutions with time-dependent support like in the porous medium equation, which is contained in our system as a special case. The motion of the free boundary may be driven by either self-diffusion of the energy-like variable or by dissipation of the velocity-like variable. The crossover of these two phenomena is exemplified for the associated planar traveling fronts. We provide existence of suitably defined weak and very weak solutions. After providing a thermodynamically motivated gradient structure, we also establish convergence into steady state for bounded domains and provide a conjecture on the asymptotically self-similar behavior of the solutions in $$\mathbb {R}^d$$ R d for large times.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Engineering,Modeling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3