Abstract
AbstractM. Kruskal showed that each continuous-time nearly periodic dynamical system admits a formal U(1)-symmetry, generated by the so-called roto-rate. When the nearly periodic system is also Hamiltonian, Noether’s theorem implies the existence of a corresponding adiabatic invariant. We develop a discrete-time analog of Kruskal’s theory. Nearly periodic maps are defined as parameter-dependent diffeomorphisms that limit to rotations along a U(1)-action. When the limiting rotation is non-resonant, these maps admit formal U(1)-symmetries to all orders in perturbation theory. For Hamiltonian nearly periodic maps on exact presymplectic manifolds, we prove that the formal U(1)-symmetry gives rise to a discrete-time adiabatic invariant using a discrete-time extension of Noether’s theorem. When the unperturbed U(1)-orbits are contractible, we also find a discrete-time adiabatic invariant for mappings that are merely presymplectic, rather than Hamiltonian. As an application of the theory, we use it to develop a novel technique for geometric integration of non-canonical Hamiltonian systems on exact symplectic manifolds.
Funder
Los Alamos National Laboratory
Academy of Finland
National Science Foundation
AFOSR
U.S. Department of Defense
Advanced Scientific Computing Research
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Engineering,Modeling and Simulation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献