Finite-Time Analysis of Crises in a Chaotically Forced Ocean Model

Author:

Axelsen Andrew R.,Quinn Courtney R.,Bassom Andrew P.

Abstract

AbstractWe consider a coupling of the Stommel box model and the Lorenz model, with the goal of investigating the so-called crises that are known to occur given sufficient forcing. In this context, a crisis is characterized as the destruction of a chaotic attractor under a critical forcing strength. We document the variety of chaotic attractors and crises possible in our model, focusing on the parameter region where the Lorenz model is always chaotic and where bistability exists in the Stommel box model. The chaotic saddle collisions that occur in a boundary crisis are visualized, with the chaotic saddle computed using the Saddle-Straddle Algorithm. We identify a novel sub-type of boundary crisis, namely a vanishing basin crisis. For forcing strength beyond the crisis, we demonstrate the possibility of a merging between the persisting chaotic attractor and either a chaotic transient or a ghost attractor depending on the type of boundary crisis. An investigation of the finite-time Lyapunov exponents around crisis levels of forcing reveals a convergence between two near-neutral exponents, particularly at points of a trajectory most sensitive to divergence. This points to loss of hyperbolicity associated with crisis occurrence. Finally, we generalize our findings by coupling the Stommel box model to other strange attractors and thereby show that the behaviors are quite generic and robust.

Funder

University of Tasmania

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3