The Quasiconvex Envelope of Conformally Invariant Planar Energy Functions in Isotropic Hyperelasticity

Author:

Martin Robert J.ORCID,Voss Jendrik,Ghiba Ionel-Dumitrel,Sander Oliver,Neff Patrizio

Abstract

AbstractWe considerconformally invariantenergiesWon the group$${{\,\mathrm{GL}\,}}^{\!+}(2)$$GL+(2)of$$2\times 2$$2×2-matrices with positive determinant, i.e.,$$W:{{\,\mathrm{GL}\,}}^{\!+}(2)\rightarrow {\mathbb {R}}$$W:GL+(2)Rsuch that$$\begin{aligned} W(A\, F\, B) = W(F) \quad \text {for all }\; A,B\in \{a\, R\in {{\,\mathrm{GL}\,}}^{\!+}(2) \,|\,a\in (0,\infty ),\; R\in {{\,\mathrm{SO}\,}}(2)\}, \end{aligned}$$W(AFB)=W(F)for allA,B{aRGL+(2)|a(0,),RSO(2)},where$${{\,\mathrm{SO}\,}}(2)$$SO(2)denotes the special orthogonal group and provides an explicit formula for the (notoriously difficult to compute)quasiconvex envelopeof these functions. Our results, which are based on the representation$$W(F)=h\bigl (\frac{\lambda _1}{\lambda _2}\bigr )$$W(F)=h(λ1λ2)ofWin terms of the singular values$$\lambda _1,\lambda _2$$λ1,λ2ofF, are applied to a number of example energies in order to demonstrate the convenience of the singular-value-based expression compared to the more common representation in terms of the distortion$${\mathbb {K}}:=\frac{1}{2}\frac{\Vert F \Vert ^2}{\det F}$$K:=12F2detF. Applying our results, we answer a conjecture by Adamowicz (in: Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni, vol 18(2), pp 163, 2007) and discuss a connection between polyconvexity and the Grötzsch free boundary value problem. Special cases of our results can also be obtained from earlier works by Astala et al. (Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton University Press, Princeton, 2008) and Yan (Trans Am Math Soc 355(12):4755–4765, 2003). Since the restricted domain of the energy functions in question poses additional difficulties with respect to the notion of quasiconvexity compared to the case of globally defined real-valued functions, we also discuss more general properties related to the$$W^{1,p}$$W1,p-quasiconvex envelope on the domain$${{\,\mathrm{GL}\,}}^{\!+}(n)$$GL+(n)which, in particular, ensure that a stricter version ofDacorogna’s formulais applicable to conformally invariant energies on$${{\,\mathrm{GL}\,}}^{\!+}(2)$$GL+(2).

Funder

Universität Duisburg-Essen

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Engineering,Modelling and Simulation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3