Spectral Stability of Shock-fronted Travelling Waves Under Viscous Relaxation

Author:

Lizarraga Ian,Marangell Robert

Abstract

AbstractReaction-nonlinear diffusion partial differential equations can exhibit shock-fronted travelling wave solutions. Prior work by Li et al. (Physica D 423:132916, 2021) has demonstrated the existence of such waves for two classes of regularizations, including viscous relaxation (see Li et al. in Physica D 423:132916, 2021). Their analysis uses geometric singular perturbation theory: for sufficiently small values of a parameter $$\varepsilon > 0$$ ε > 0 characterizing the ‘strength’ of the regularization, the waves are constructed as perturbations of a singular heteroclinic orbit. Here we show rigorously that these waves are spectrally stable for the case of viscous relaxation. Our approach is to show that for sufficiently small $$\varepsilon >0$$ ε > 0 , the ‘full’ eigenvalue problem of the regularized system is controlled by a reduced slow eigenvalue problem defined for $$\varepsilon = 0$$ ε = 0 . In the course of our proof, we examine the ways in which this geometric construction complements and differs from constructions of other reduced eigenvalue problems that are known in the wave stability literature.

Funder

Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Engineering,Modeling and Simulation

Reference40 articles.

1. Alexander, J., Gardner, R., Jones, C.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167–212 (1990)

2. Atiyah, M.F.: K-Theory. W.A. Benjamin Inc, New York (1967)

3. Bose, A.: A geometric approach to singularly perturbed nonlocal reaction–diffusion equations. SIAM J. Math. Anal. 31, 431–454 (2000)

4. Bradshaw-Hajek, B., Lizarraga, I., Marangell, R., Wechselberger, M.: A geometric singular perturbation analysis of regularised reaction-nonlinear diffusion models including shocks. In: Proceedings of 47th Sapporo Symposium on Partial Differential Equations, pp. 53–64 (2022)

5. Brunovsky, P.: Tracking invariant manifolds without differential forms. Acta Math. Univ. Comenion. 65, 23–32 (1996)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3