Blowup Analysis of a Hysteresis Model Based Upon Singular Perturbations

Author:

Kristiansen K. U.

Abstract

AbstractIn this paper, we provide a geometric analysis of a new hysteresis model that is based upon singular perturbations. Here hysteresis refers to a type of regularization of piecewise smooth differential equations where the past of a trajectory, in a small neighborhood of the discontinuity set, determines the vector-field at present. In fact, in the limit where the neighborhood of the discontinuity vanishes, hysteresis converges in an appropriate sense to Filippov’s sliding vector-field. Recently (2022), however, Bonet and Seara showed that hysteresis, in contrast to regularization through smoothing, leads to chaos in the regularization of grazing bifurcations, even in two dimensions. The hysteresis model we analyze in the present paper—which was developed by Bonet et al in a paper from 2017 as an attempt to unify different regularizations of piecewise smooth systems—involves two singular perturbation parameters and includes a combination of slow–fast and nonsmooth effects. The description of this model is therefore—from the perspective of singular perturbation theory—challenging, even in two dimensions. Using blowup as our main technical tool, we prove existence of an invariant cylinder carrying fast dynamics in the azimuthal direction and a slow drift in the axial direction. We find that the slow drift is given by Filippov’s sliding vector-field to leading order. Moreover, in the case of grazing, we identify two important parameter regimes that relate the model to smoothing (through a saddle-node bifurcation of limit cycles) and hysteresis (through chaotic dynamics, due to a folded saddle and a novel return mechanism).

Funder

Technical University of Denmark

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Engineering,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3