Abstract
AbstractWe develop three asymptotic models of surface waves in a non-Newtonian fluid with odd viscosity. This viscosity is also known as Hall viscosity and appears in a number of applications such as quantum Hall fluids or chiral active fluids. Besides the odd viscosity effects, these models capture both gravity and capillary forces up to quadratic interactions and take the form of nonlinear and nonlocal wave equations. Two of these models describe bidirectional waves, while the third PDE studies the case of unidirectional propagation. We also prove the well-posedness of these asymptotic models in spaces of analytic functions and in Sobolev spaces. Finally, we present a number of numerical simulations for the unidirectional model.
Funder
Agencia Estatal de Investigación
Fundación BBVA
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Engineering,Modeling and Simulation
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献