Stability of Boundary Conditions for the Sadowsky Functional

Author:

Freddi Lorenzo,Hornung Peter,Mora Maria GiovannaORCID,Paroni Roberto

Abstract

AbstractIt has been proved by the authors that the (extended) Sadowsky functional can be deduced as the $$\Gamma $$ Γ -limit of the Kirchhoff energy on a rectangular strip, as the width of the strip tends to 0. In this paper, we show that this $$\Gamma $$ Γ -convergence result is stable when affine boundary conditions are prescribed on the short sides of the strip. These boundary conditions include those corresponding to a Möbius band. This provides a rigorous justification of the original formal argument by Sadowsky about determining the equilibrium shape of a free-standing Möbius strip. We further write the equilibrium equations for the limit problem and show that, under some regularity assumptions, the centerline of a developable Möbius band at equilibrium cannot be a planar curve.

Funder

Università degli Studi di Udine

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Engineering,Modeling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From elastic shallow shells to beams with elastic hinges by $$\Gamma $$-convergence;Zeitschrift für angewandte Mathematik und Physik;2024-07-05

2. Existence of Optimal Flat Ribbons;The Journal of Geometric Analysis;2024-05-30

3. Elastic membranes spanning deformable curves;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2024-04-04

4. Framed Curves, Ribbons, and Parallel Transport on the Sphere;Journal of Nonlinear Science;2023-06-16

5. Stability of Sensor Network based on Non-linear Data Analysis for in situ Leaching of Ionic Rare Earth Ore Bodies under Similar Simulation Experiments;International Journal on Smart Sensing and Intelligent Systems;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3