Abstract
AbstractIn this paper, we investigate the influence of the bulk Dzyaloshinskii–Moriya interaction on the magnetic properties of composite ferromagnetic materials with highly oscillating heterogeneities, in the framework of $$\Gamma $$Γ-convergence and 2-scale convergence. The homogeneous energy functional resulting from our analysis provides an effective description of most of the magnetic composites of interest nowadays. Although our study covers more general scenarios than the micromagnetic one, it builds on the phenomenological considerations of Dzyaloshinskii on the existence of helicoidal textures, as a result of possible instabilities of ferromagnetic structures under small relativistic spin–lattice or spin–spin interactions. In particular, we provide the first quantitative counterpart to Dzyaloshinskii’s predictions on helical structures.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Engineering,Modelling and Simulation
Reference52 articles.
1. Acerbi, E., Fonseca, I., Mingione, G.: Existence and regularity for mixtures of micromagnetic materials. Proce. R. Soc. A Math. Phys. Eng. Sci. 462, 2225–2243 (2006). https://doi.org/10.1098/rspa.2006.1655
2. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23, 1482–1518 (1992)
3. Alouges, F., De Bouard, A., Merlet, B., Nicolas, L.: Stochastic homogenization of the Landau–Lifshitz–Gilbert equation (2019). arXiv preprint arXiv:1902.05743
4. Alouges, F., Di Fratta, G.: Homogenization of composite ferromagnetic materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 471, 20150365 (2015). https://doi.org/10.1098/rspa.2015.0365
5. Babadjian, J.-F., Millot, V.: Homogenization of variational problems in manifold valued Sobolev spaces. ESAIM: Control Optim. Calc. Var. 16, 833–855 (2009). https://doi.org/10.1051/cocv/2009025
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献