Abstract
AbstractWe prove that, if $$\varGamma $$
Γ
is a finite connected 3-valent vertex-transitive, or 4-valent vertex- and edge-transitive graph, then either $$\varGamma $$
Γ
is part of a well-understood family of graphs, or every non-identity automorphism of $$\varGamma $$
Γ
fixes at most 1/3 of the edges. This answers a question proposed by Primož Potočnik and the third author.
Funder
Università degli Studi di Pavia
Publisher
Springer Science and Business Media LLC
Subject
Discrete Mathematics and Combinatorics,Algebra and Number Theory
Reference19 articles.
1. Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge (1993)
2. Gardiner, A., Praeger, C.E.: A characterization of certain families of 4 symmetric graphs. European J. Combin. 15, 383–397 (1994). https://doi.org/10.1006/eujc.1994.1042
3. Godsil, C., Royle, G.: Algebraic Graph Theory, Graduate Texts in Mathematics, vol. 207. Springer, New York (2001)
4. Jajcay, R., Potočnik, P., Wilson, S.: The Praeger–Xu graphs: cycle structures, maps and semitransitive orientations. Acta Math. Univ. Comenian. 88, 22–26 (2019)
5. Jajcay, R., Potočnik, P., Wilson, S.: On the cayleyness of Praeger–Xu graphs. J. Combin. Theory Ser. B 152, 55–79 (2022). https://doi.org/10.1016/j.jctb.2021.09.003
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Vertex-primitive digraphs with large fixity;Annali di Matematica Pura ed Applicata (1923 -);2024-04-12