Abstract
AbstractAssociative spectra of graph algebras are examined with the help of homomorphisms of DFS trees. Undirected graphs are classified according to the associative spectra of their graph algebras; there are only three distinct possibilities: constant 1, powers of 2, and Catalan numbers. Associative and antiassociative digraphs are described, and associative spectra are determined for certain families of digraphs, such as paths, cycles, and graphs on two vertices.
Funder
Fundação para a Ciência e a Tecnologia
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Emberi Eroforrások Minisztériuma
University of Szeged Open Access Fund
Publisher
Springer Science and Business Media LLC
Subject
Discrete Mathematics and Combinatorics,Algebra and Number Theory
Reference19 articles.
1. Berman, J., Burris, S.: A computer study of 3–element groupoids. In: Ursini, A., Aglianò P. (eds.), Logic and Algebra (Pontignano, 1994). Lecture Notes in Pure and Appl. Math., 180, pp. 379–429. Dekker, New York (1996)
2. Braitt, M., Hobby, D., Silberger, D.: Completely dissociative groupoids. Math. Bohem. 137, 79–97 (2012)
3. Braitt, M., Hobby, D., Silberger, D.: Antiassociative groupoids. Math. Bohem. 142, 27–46 (2017)
4. Braitt, M.S., Silberger, D.: Subassociative groupoids. Quasigroups Related Systems 14, 11–26 (2006)
5. Climescu, A.C.: Études sur la théorie des systèmes multiplicatifs uniformes I. L’indice de non-associativité. Bull. École Polytech. Jassy 2, 347–371 (1947) (French)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献