Betti numbers of fat forests and their Alexander dual

Author:

Fröberg RalfORCID

Abstract

AbstractLet k be a field and $$R=k[x_1,\ldots ,x_n]/I=S/I$$ R = k [ x 1 , , x n ] / I = S / I a graded ring. Then R has a t-linear resolution if I is generated by homogeneous elements of degree t, and all higher syzygies are linear. Thus, R has a t-linear resolution if $$\mathrm{Tor}^S_{i,j}(S/I,k)=0$$ Tor i , j S ( S / I , k ) = 0 if $$j\ne i+t-1$$ j i + t - 1 . For a graph G on $$\{1,\ldots ,n\}$$ { 1 , , n } , the edge algebra is $$k[x_1,\ldots ,x_n]/I$$ k [ x 1 , , x n ] / I , where I is generated by those $$x_ix_j$$ x i x j for which $$\{ i,j\}$$ { i , j } is an edge in G. We want to determine the Betti numbers of edge rings with 2-linear resolution. But we want to do that by looking at the edge ring as a Stanley–Reisner ring. For a simplicial complex $$\Delta $$ Δ on $$[\mathbf{n}]=\{1,\ldots ,n\}$$ [ n ] = { 1 , , n } and a field k, the Stanley–Reisner ring $$k[\Delta ]$$ k [ Δ ] is $$k[x_1,\ldots ,x_n]/I$$ k [ x 1 , , x n ] / I , where I is generated by the squarefree monomials $$x_{i_1}\ldots x_{i_k}$$ x i 1 x i k for which $$\{ i_1,\ldots ,i_k\}$$ { i 1 , , i k } does not belong to $$\Delta $$ Δ . Which Stanley–Reisner rings that are edge rings with 2-linear resolution are known. Their associated complexes has had different names in the literature. We call them fat forests here. We determine the Betti numbers of many fat forests and compare our result with what is known. We also consider Betti numbers of Alexander duals of fat forests.

Funder

Stockholm University

Publisher

Springer Science and Business Media LLC

Subject

Discrete Mathematics and Combinatorics,Algebra and Number Theory

Reference23 articles.

1. Aramova, A., Herzog, J., Hibi, T.: Squarefree lexsegment ideals. Math. Z. 228, 353–378 (1998)

2. Autry, J., Graves, P., Loucks, J., O’Neill, C., Ponomarenko, V., Yih, S.: Squarefree divisor complexes of certain numerical semigroup elements. arXiv:1804.06632v1

3. Bayer, D., Charalambous, H., Popescu, S.: Extremal Betti numbers and applications to monomial ideals. J. Algebra 221, 497–512 (1999)

4. Bruns, W., Herzog, J.: Cohen–Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, pp. xii+403. Cambridge University Press, Cambridge (1993)

5. Chen, R.: Minimal free resolutions of linear edge ideals. J. Algebra 324(12), 3591–3613 (2010)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linear strand of edge ideals of zero divisor graphs of the ring ℤ n;Communications in Algebra;2024-07

2. Betti Numbers of Edge Ideals of Grimaldi Graphs and Their Complements;Bulletin of the Malaysian Mathematical Sciences Society;2024-06-27

3. Solution to a conjecture on edge rings with 2-linear resolutions;Communications in Algebra;2022-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3