1. Aldous, D., Fill, J.A.: Reversible markov chains and random walks on graphs. Unfinished monograph, recompiled 2014 (2002).http://www.stat.berkeley.edu/~aldous/RWG/book.html
2. Benkart, G., Ram, A., Shader, C.L.: Tensor product representations for orthosymplectic Lie superalgebras. J. Pure Appl. Algebra 130(1), 1–48 (1998)
3. Bergeron, F., Favreau, L.: Fourier transform over semi-simple algebras and harmonic analysis for probabilistic algorithms. Discrete Math., 139(1-3):19–32. Formal power series and algebraic combinatorics (Montreal, PQ, 1992) (1995)
4. Brémaud, P.: Markov chains, volume 31 of texts in applied mathematics. In: Marsden, J.E., Sirovich, L., Golubitsky, M., Jäger, W. (eds.) Gibbs fields, Monte Carlo simulation, and queues. Springer, New York (1999)
5. Cai, Y.: How rates of convergence for Gibbs fields depend on the interaction and the kind of scanning used. In: Hou, Z., Filar, J.A., Chen, A. (eds.) Markov Processes and Controlled Markov Chains (Changsha, 1999), pp 489–498. Kluwer Acad. Publ, Dordrecht (2002)