1. Bell, J., Stevens, B.: A survey of known results and research areas for $$n$$ n -queens. Discret. Math. 309(1), 1–31 (2009). MR 2474997 (2010a:05002). Zbl 1228.05002
2. Chaiken, S., Hanusa, C.R.H., Zaslavsky, T.: A $$q$$ q -queens problem. I. General theory. Submitted. arXiv:1303.1879 . III. Partial queens. Submitted. arXiv:1402.4886 . IV. Queens, bishops, and nightriders. In preparation. V. The bishops’ period. Submitted. arXiv:1405.3001
3. Kotěšovec, V.: Non-attacking chess pieces (chess and mathematics) [Šach a matematika - počty rozmístění neohrožujících se kamen $$\overset{\circ }{\rm u}$$ u ∘ ]. (In mixed Czech and English.) [Self-published online book], Apr. 2010; 2nd ed. Jun. 2010; 3rd ed. Jan., 2011; 4th ed. June, 2011; 5th ed. Jan., 2012; 6th ed. Feb., 2013, 795 pp. URL http://web.telecom.cz/vaclav.kotesovec/math.htm
4. McMullen, P.: Lattice invariant valuations on rational polytopes. Arch. Math. (Basel) 31(5), 509–516 (1978/1979). MR 526617 (80d:52011). Zbl 387.52007