Cohomology-developed matrices: constructing families of weighing matrices and automorphism actions

Author:

Goldberger AssafORCID,Dula Giora

Abstract

AbstractThe aim of this work is to construct families of weighing matrices via their automorphism group action. The matrices can be reconstructed from the 0, 1, 2-cohomology groups of the underlying automorphism group. We use this mechanism to (re)construct the matrices out of abstract group datum. As a consequence, some old and new families of weighing matrices are constructed. These include the Paley conference, the projective space, the Grassmannian, and the flag variety weighing matrices. We develop a general theory relying on low-dimensional group cohomology for constructing automorphism group actions and in turn obtain structured matrices that we call cohomology-developed matrices. This ‘cohomology development’ generalizes the cocyclic and group developments. The algebraic structure of modules of cohomology-developed matrices is discussed, and an orthogonality result is deduced. We also use this algebraic structure to define the notion of quasiproducts, which is a generalization of the Kronecker product.

Funder

Tel Aviv University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3