Abstract
AbstractGiven a finite permutation group G with domain $$\Omega $$
Ω
, we associate two subsets of natural numbers to G, namely $${\mathcal {I}}(G,\Omega )$$
I
(
G
,
Ω
)
and $${\mathcal {M}}(G,\Omega )$$
M
(
G
,
Ω
)
, which are the sets of cardinalities of all the irredundant and minimal bases of G, respectively. We prove that $${\mathcal {I}}(G,\Omega )$$
I
(
G
,
Ω
)
is an interval of natural numbers, whereas $${\mathcal {M}}(G,\Omega )$$
M
(
G
,
Ω
)
may not necessarily form an interval. Moreover, for a given subset of natural numbers $$X \subseteq {\mathbb {N}}$$
X
⊆
N
, we provide some conditions on X that ensure the existence of both intransitive and transitive groups G such that $${\mathcal {I}}(G,\Omega ) = X$$
I
(
G
,
Ω
)
=
X
and $${\mathcal {M}}(G,\Omega ) = X$$
M
(
G
,
Ω
)
=
X
.
Funder
Università degli Studi di Milano - Bicocca
Publisher
Springer Science and Business Media LLC
Reference10 articles.
1. London Mathematical Society Student Texts;PJ Cameron,1999
2. Cameron, P.J., Fon-Der-Flaass, D.G.: Bases for permutation groups and matroids. Eur. J. Comb. 16, 537–544 (1995)
3. Del Valle, C., Roney-Dougal, C.M.: The base size of the symmetric group acting on subsets (2023). arXiv preprint arXiv:2308.04360
4. Gill, N., Lodà, B., Spiga, P.: On the height and relational complexity of a finite permutation group. Nagoya Math. J. 246, 372–411 (2022)
5. Gill, N., Lodà, B.: Statistics for $$S_n$$ acting on $$k$$-sets. J. Algebra 607, 286–299 (2022)