Abstract
AbstractLet $$g_1H_1,\ldots ,g_nH_n$$
g
1
H
1
,
…
,
g
n
H
n
be cosets of subgroups $$H_1,\ldots ,H_n$$
H
1
,
…
,
H
n
of a finite group G such that $$g_1H_1\cup \ldots \cup g_nH_n\ne G$$
g
1
H
1
∪
…
∪
g
n
H
n
≠
G
. We prove that $$|g_1H_1\cup \ldots \cup g_nH_n|\le \gamma _n|G|$$
|
g
1
H
1
∪
…
∪
g
n
H
n
|
≤
γ
n
|
G
|
where $$\gamma _n<1$$
γ
n
<
1
is a constant depending only on n. In special cases, we show that $$\gamma _n=(2^n-1)/2^n$$
γ
n
=
(
2
n
-
1
)
/
2
n
is the best possible constant with this property and we conjecture that this is generally true.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Discrete Mathematics and Combinatorics,Algebra and Number Theory
Reference9 articles.
1. Alon, N., Füredi, Z.: Covering the cube by affine hyperplanes. European J. Combin. 14, 79–83 (1993)
2. Bhargava, M.: Groups as unions of proper subgroups. Amer. Math. Monthly 116, 413–422 (2009)
3. Butler, L.M., Hales, A.W.: Generalized flags in $$p$$-groups. Comput. Math. Appl. 39, 67–76 (2000)
4. Cameron, P.J., Cohen, A.M.: On the number of fixed point free elements in a permutation group. Discrete Math. 106(107), 135–138 (1992)
5. Erdős, P.: Remarks on number theory. IV. Extremal problems in number theory. I (Hungarian). Mat. Lapok 13, 228–255 (1962)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献