Publisher
Springer Science and Business Media LLC
Subject
Algebra and Number Theory
Reference5 articles.
1. Alemida, J., J.-E. Pin and P. Weil, Semigroups whose idempotents form a subsemigroup, Math. Proc. Camb. Phil. Soc.111 (1992), 241–253.
2. Clifford, A. and G. Preston, Algebraic Theory of Semigroups, vol. II, (Amer. Math. Soc., Providence, R.I., 1967).
3. Croisot, R.,Propriétés des complexes forts et symétriques des demi-groups, Bull. Soc. Math. France80 (1952), 217–223.
4. Feigenbaum, R.,Kernels of Regular Semigroup Homomorphisms, Doctoral Dissertation, University of South Carolina, (1975).
5. Fountain, J., (E)-dense monoids, Proceedings of Monash Conference, 1990, World Scientific.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Formations of orthodox semigroups;Semigroup Forum;2023-11-08
2. Extension of cancelable commutative semigroups;Proceedings of the 5th International Conference on Big Data Technologies;2022-09-23
3. Near-ring congruences on seminearrings;Semigroup Forum;2022-01-04
4. Congruences on a Semilattice of Inverse Monoids;Proceedings of the 2nd International Conference on Big Data Technologies - ICBDT2019;2019
5. On the Lattice of Congruences on Idempotent-Regular-Surjective Semigroups;Communications in Algebra;2013-10-18