Subcutaneous adipose tissue dopamine D2 receptor is increased in prediabetes and T2D

Author:

Vranic Milica,Ahmed Fozia,Kristófi Robin,Hetty Susanne,Mokhtari Dariush,Svensson Maria K.,Eriksson Jan W.,Pereira Maria J.ORCID

Abstract

Abstract Purpose To evaluate the dopaminergic signaling in human adipose tissue in the context of obesity and type 2 diabetes (T2D) and potential direct implications in adipose tissue metabolism. Methods mRNA and protein expression of dopamine receptors D1 and D2 (DRD1 and DRD2) were determined in subcutaneous adipose tissue from subjects without or with T2D and with different body weight, and correlated with markers of obesity, hyperglycemia, and insulin resistance. Glucose uptake and lipolysis were measured in adipocytes ex vivo following short-term exposure to dopamine, DRD1 receptor agonist (SKF81297), or DRD2 receptor agonist (bromocriptine). Results DRD1 and DRD2 gene expression in subcutaneous adipose tissue correlated positively with clinical markers of insulin resistance (e.g. HOMA-IR, insulin, and triglycerides) and central obesity in subjects without T2D. Protein expression of DRD2 in subcutaneous adipose tissue, but not DRD1, is higher in subjects with impaired fasting glucose and T2D and correlated positively with hyperglycemia, HbA1c, and glucose AUC, independent of obesity status. DRD1 and DRD2 proteins were mainly expressed in adipocytes, compared to stromal vascular cells. Dopamine and dopaminergic agonists did not affect adipocyte glucose uptake ex vivo, but DRD1 and DRD2 agonist treatment inhibited isoproterenol-stimulated lipolysis. Conclusion The results suggest that protein expression of DRD2 in subcutaneous adipose tissue is up-regulated with hyperglycemia and T2D. Whether DRD2 protein levels contribute to T2D development or occur as a secondary compensatory mechanism needs further investigation. Additionally, dopamine receptor agonists inhibit adipocyte beta-adrenergic stimulation of lipolysis, which might contribute to the beneficial effects in lipid metabolism as observed in patients taking bromocriptine.

Funder

Gunvor och Josef Anérs Siftelse

Swedish Diabetes Wellness

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3