Secondary diabetes mellitus in pheochromocytomas and paragangliomas

Author:

Moustaki Melpomeni,Paschou Stavroula A.ORCID,Vakali Elena,Xekouki Paraskevi,Ntali Georgia,Kassi Evanthia,Peppa Melpomeni,Psaltopoulou Theodora,Tzanela Marinella,Vryonidou Andromachi

Abstract

AbstractSecondary diabetes mellitus (DM) in secretory pheochromocytomas and paragangliomas (PPGLs) is encountered in up to 50% of cases, with its presentation ranging from mild, insulin resistant forms to profound insulin deficiency states, such as diabetic ketoacidosis and hyperglycemic hyperosmolar state. PPGLs represent hypermetabolic states, in which adrenaline and noradrenaline induce insulin resistance in target tissues characterized by aerobic glycolysis, excessive lipolysis, altered adipokine expression, subclinical inflammation, as well as enhanced gluconeogenesis and glucogenolysis. These effects are mediated both directly, upon adrenergic receptor stimulation, and indirectly, via increased glucagon secretion. Impaired insulin secretion is the principal pathogenetic mechanism of secondary DM in this setting; yet, this is relevant for tumors with adrenergic phenotype, arising from direct inhibitory actions in beta pancreatic cells and incretin effect impairment. In contrast, insulin secretion might be enhanced in tumors with noradrenergic phenotype. This dimorphic effect might correspond to two distinct glycemic phenotypes, with predominant insulin resistance and insulin deficiency respectively. Secondary DM improves substantially post-surgery, with up to 80% remission rate. The fact that surgical treatment of PPGLs restores insulin sensitivity and secretion at greater extent compared to alpha and beta blockade, implies the existence of further, non-adrenergic mechanisms, possibly involving other hormonal co-secretion by these tumors. DM management in PPGLs is scarcely studied. The efficacy and safety of newer anti-diabetic medications, such as glucagon-like peptide 1 receptor agonists and sodium glucose cotransporter 2 inhibitors (SGLT2is), as well as potential disease-modifying roles of metformin and SGLT2is warrant further investigation in future studies.

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3