Effects of gastric bypass surgery on brain connectivity responses to hypoglycemia

Author:

Fanni Giovanni,Kagios Christakis,Roman Erika,Sundbom Magnus,Wikström Johan,Haller Sven,Eriksson Jan W.ORCID

Abstract

Abstract Introduction Roux-en-Y gastric bypass (RYGB) leads to beneficial effects on glucose homeostasis, and attenuated hormonal counterregulatory responses to hypoglycemia are likely to contribute. RYGB also induces alterations in neural activity of cortical and subcortical brain regions. We aimed to characterize RYGB-induced changes in resting-state connectivity of specific brain regions of interest for energy homeostasis and behavioral control during hypoglycemia. Method Ten patients with BMI > 35 kg/m2 were investigated with brain PET/MR imaging during a hyperinsulinemic normo- and hypoglycemic clamp, before and 4 months after RYGB. Hormonal levels were assessed throughout the clamp. Resting-state (RS) fMRI scans were acquired in the glucose-lowering phase of the clamp, and they were analyzed with a seed-to-voxel approach. Results RS connectivity during initiation of hypoglycemia was significantly altered after RYGB between nucleus accumbens, thalamus, caudate, hypothalamus and their crosstalk with cortical and subcortical regions. Connectivity between the nucleus accumbens and the frontal pole was increased after RYGB, and this was associated with a reduction of ACTH (r = −0.639, p = 0.047) and cortisol (r = −0.635, p = 0.048) responses. Instead, connectivity between the caudate and the frontal pole after RYGB was reduced and this was associated with less attenuation of glucagon response during the hypoglycemic clamp (r = −0.728, p = 0.017), smaller reduction in fasting glucose (r = −0.798, p = 0.007) and less excess weight loss (r = 0.753, p = 0.012). No other significant associations were found between post-RYGB changes in ROI-to-voxel regional connectivity hormonal responses and metabolic or anthropometric outcomes. Conclusion RYGB alters brain connectivity during hypoglycemia of several neural pathways involved in reward, inhibitory control, and energy homeostasis. These changes are associated with altered hormonal responses to hypoglycemia and may be involved in the glucometabolic outcome of RYGB.

Funder

Svenska Diabetesstiftelsen

Exodiab

Stiftelsen Familjen Ernfors Fond

P. O. Zetterlings stiftelse

Svenska Sällskapet för Medicinsk Forskning

H2020 Marie Skłodowska-Curie Actions

Akademiska Sjukhuset

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3