Abstract
Abstract
Objective
The primary objective was to establish a radiomics model utilizing longitudinal +cross-sectional ultrasound (US) images of lymph nodes (LNs) to predict cervical lymph node metastasis (CLNM) following differentiated thyroid carcinoma (DTC) surgery.
Methods
A retrospective collection of 211 LNs from 211 postoperative DTC patients who underwent neck US with suspicious LN fine needle aspiration cytopathology findings at our institution was conducted between June 2021 and April 2023. Conventional US and clinicopathological information of patients were gathered. Based on the pathological results, patients were categorized into CLNM and non-CLNM groups. The database was randomly divided into a training cohort (n = 147) and a test cohort (n = 64) at a 7:3 ratio. The least absolute shrinkage and selection operator algorithm was applied to screen the most relevant radiomic features from the longitudinal + cross-sectional US images, and a radiomics model was constructed. Univariate and multivariate analyses were used to assess US and clinicopathological significance features. Subsequently, a combined model for predicting CLNM was constructed by integrating radiomics, conventional US, and clinicopathological features and presented as a nomogram.
Results
The area under the curves (AUCs) of the longitudinal + cross-sectional radiomics models were 0.846 and 0.801 in the training and test sets, respectively, outperforming the single longitudinal and cross-sectional models (p < 0.05). In the testing cohort, the AUC of the combined model in predicting CLNM was 0.901, surpassing that of the single US model (AUC, 0.731) and radiomics model (AUC, 0.801).
Conclusions
The US-based radiomics model exhibits the potential to accurately predict CLNM following DTC surgery, thereby enhancing diagnostic accuracy.
Publisher
Springer Science and Business Media LLC
Subject
Endocrinology,Endocrinology, Diabetes and Metabolism