Consensus Paper: Latent Autoimmune Cerebellar Ataxia (LACA)

Author:

Manto Mario,Hadjivassiliou Marios,Baizabal-Carvallo José Fidel,Hampe Christiane S,Honnorat Jerome,Joubert Bastien,Mitoma HiroshiORCID,Muñiz-Castrillo Sergio,Shaikh Aasef G.,Vogrig Alberto

Abstract

AbstractImmune-mediated cerebellar ataxias (IMCAs) have diverse etiologies. Patients with IMCAs develop cerebellar symptoms, characterized mainly by gait ataxia, showing an acute or subacute clinical course. We present a novel concept of latent autoimmune cerebellar ataxia (LACA), analogous to latent autoimmune diabetes in adults (LADA). LADA is a slowly progressive form of autoimmune diabetes where patients are often initially diagnosed with type 2 diabetes. The sole biomarker (serum anti-GAD antibody) is not always present or can fluctuate. However, the disease progresses to pancreatic beta-cell failure and insulin dependency within about 5 years. Due to the unclear autoimmune profile, clinicians often struggle to reach an early diagnosis during the period when insulin production is not severely compromised. LACA is also characterized by a slowly progressive course, lack of obvious autoimmune background, and difficulties in reaching a diagnosis in the absence of clear markers for IMCAs. The authors discuss two aspects of LACA: (1) the not manifestly evident autoimmunity and (2) the prodromal stage of IMCA’s characterized by a period of partial neuronal dysfunction where non-specific symptoms may occur. In order to achieve an early intervention and prevent cell death in the cerebellum, identification of the time-window before irreversible neuronal loss is critical. LACA occurs during this time-window when possible preservation of neural plasticity exists. Efforts should be devoted to the early identification of biological, neurophysiological, neuropsychological, morphological (brain morphometry), and multimodal biomarkers allowing early diagnosis and therapeutic intervention and to avoid irreversible neuronal loss.

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Neurology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3