Convolutional Neural Network for Fully Automated Cerebellar Volumetry in Children in Comparison to Manual Segmentation and Developmental Trajectory of Cerebellar Volumes

Author:

Sobootian Daria Juliane,Bronzlik Paul,Spineli Loukia M.,Becker Lena Sophie,Winther Hinrich Boy,Bueltmann EvaORCID

Abstract

AbstractThe purpose of this study was to develop a fully automated and reliable volumetry of the cerebellum of children during infancy and childhood using deep learning algorithms in comparison to manual segmentation. In addition, the clinical usefulness of measuring the cerebellar volume is shown. One hundred patients (0 to 16.3 years old) without infratentorial signal abnormalities on conventional MRI were retrospectively selected from our pool of pediatric MRI examinations. Based on a routinely acquired 3D T1-weighted magnetization prepared rapid gradient echo (MPRAGE) sequence, the cerebella were manually segmented using ITK-SNAP. The data set of all 100 cases was divided into four splits (four-fold cross-validation) to train the network (NN) to delineate the boundaries of the cerebellum. First, the accuracy of the newly created neural network was compared with the manual segmentation. Secondly, age-related volume changes were investigated. Our trained NN achieved an excellent Spearman correlation coefficient of 0.99, a Dice Coefficient of 95.0 ± 2.1%, and an intersection over union (IoU) of 90.6 ± 3.8%. Cerebellar volume increased continuously with age, showing an exponentially rapid growth within the first year of life. Using a convolutional neural network, it was possible to achieve reliable, fully automated cerebellar volume measurements in childhood and infancy, even when based on a relatively small cohort. In this preliminary study, age-dependent cerebellar volume changes could be acquired.

Funder

Medizinische Hochschule Hannover (MHH)

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3