Hyperspectral image classification using multi-task feature leverage with multi-variant deep learning
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Link
https://link.springer.com/content/pdf/10.1007/s12145-020-00485-2.pdf
Reference72 articles.
1. Aneesh C, Kumar S, Hisham P, Soman K (2015) Performance comparison of variational mode decomposition over empirical wavelet transform for the classification of power quality disturbances using support vector machine. Procedia Comput Sci 46:372–380
2. Bandos TV, Bruzzone L, Camps Valls G (2009) Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans Geosci Remote Sens 47(3):862–873
3. Becerra-Rico J, Aceves-Fernández MA, Esquivel-Escalante K et al (2020) Airborne particle pollution predictive model using Gated Recurrent Unit (GRU) deep neural networks. Earth Sci Inform
4. Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Ser B Methodol 36:192–236
5. Bhatt M, Desai UB (1994) Robust image restoration algorithm using markov random field model. CVGIP Graph Model Image Proc 56(1):61–74
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Image Recognition of Mine Water Inrush Based on Bilinear Convolutional Neural Network with Few-Shot Learning;ACS Omega;2024-02-27
2. Deep concatenated features with improved heuristic-based recurrent neural network for hyperspectral image classification;Multimedia Tools and Applications;2023-11-06
3. Extreme Learning Machine: A Comprehensive Survey of Theories & Algorithms;2023 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES);2023-04-28
4. A Pioneering Approach of Hyperspectral Image Classification Employing the Cooperative Efforts of 3D, 2D and Depthwise Separable-1D Convolutions;2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC);2022-12-15
5. Image recognition of mine water inrush based on bilinear convolutional neural network with few-shot learning;2022-10-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3