A review of models for water level forecasting based on machine learning
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Link
https://link.springer.com/content/pdf/10.1007/s12145-021-00664-9.pdf
Reference101 articles.
1. Abdul Mokhtar S, Wan Ishak WH, Md Norwawi N (2014) Modelling of reservoir water release decision using neural network and temporal pattern of reservoir water level. In: Proceedings of the fifth international conference on intelligent systems, modelling and simulation, pp 127–130
2. Abu-Mouti FS, El-Hawary ME (2012) Overview of Artificial Bee Colony (ABC) algorithm and its applications. In: 2012 IEEE international systems conference SysCon 2012, pp 1–6
3. Ahmadianfar I, Adib A, Salarijazi M (2016) Optimizing multireservoir operation: hybrid of bat algorithm and differential evolution. J Water Resour Plan Manag 142(2):05015010
4. Ahmed E-SN, Amr E-S (2019) Daily forecasting of dam water levels using machine learning. Int J Civil Eng Technol 10(6):314–323
5. Al-Aqeeli YH, Lee TS, Abd Aziz S (2016) Enhanced genetic algorithm optimization model for a single reservoir operation based on hydropower generation: case study of Mosul reservoir, northern Iraq. Springer Plus 5(1):1–21
Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Water resource forecasting with machine learning and deep learning: A scientometric analysis;Artificial Intelligence in Geosciences;2024-12
2. Predicting flood stages in watersheds with different scales using hourly rainfall dataset: A high-volume rainfall features empowered machine learning approach;Science of The Total Environment;2024-11
3. Enhanced water level monitoring for small and complex inland water bodies using multi-satellite remote sensing;Environmental Modelling & Software;2024-09
4. Deep learning models for multi-step prediction of water levels incorporating meteorological variables and historical data;Stochastic Environmental Research and Risk Assessment;2024-08-14
5. Qanat discharge prediction using a comparative analysis of machine learning methods;Earth Science Informatics;2024-07-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3