Denoising of multidimensional seismic data in the physical domain by a new non-local self similarity method
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Link
https://link.springer.com/content/pdf/10.1007/s12145-022-00908-2.pdf
Reference47 articles.
1. Amani S, Gholami A, Niestanak AJ (2017) Seismic random noise attenuation via 3D block matching. J Appl Geophys 136:353–363
2. Anvari R, Siahsar MAN, Gholtashi S, Kahoo AR, Mohammadi M (2017) Seismic random noise attenuation using synchrosqueezed wavelet transform and low-rank signal matrix approximation. IEEE Trans Geosci Remote Sens 55(11):6574–6581
3. Anvari R, Mohammadi M, Kahoo AR (2018) Enhancing 3-D seismic data using the t-SVD and optimal shrinkage of singular value. IEEE J Sel Top Appl Earth Obs Remote Sens 12(1):382–388
4. Anvari R, Kahoo AR, Mohammadi M, Khan NA, Chen Y (2019) Seismic random noise attenuation using sparse low-rank estimation of the signal in the time–frequency domain. IEEE J Sel Top Appl Earth Obs Remote Sens 12(5):1612–1618
5. Anvari R, Mohammadi M, Kahoo AR, Khan NA, Abdullah AI (2020) Random noise attenuation of 2D seismic data based on sparse low-rank estimation of the seismic signal. Comput Geosci 135:104376
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Tensor robust principal component analysis via dual l quasi-norm sparse constraints;Digital Signal Processing;2024-07
2. Random noise attenuation in seismic data using an adaptive thresholding and the second-order variant time-reassigned synchrosqueezing transform;Acta Geophysica;2024-05-27
3. Seismic random noise attenuation with deep skip autoencoder based on hybrid attention mechanism;Journal of Applied Geophysics;2024-01
4. Efficient Seismic Data Denoising via Deep Learning With Improved MCA-SCUNet;IEEE Transactions on Geoscience and Remote Sensing;2024
5. Seismic Data Strong Noise Attenuation Based on Diffusion Model and Principal Component Analysis;IEEE Transactions on Geoscience and Remote Sensing;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3