A QGIS -plugin for gully erosion modeling

Author:

Khan Saad,Omran AdelORCID,Schröder Dietrich,Sommer ChristianORCID,Hochschild Volker,Märker MichaelORCID

Abstract

AbstractGully erosion affects the landscape and human life in many ways, including the destruction of agricultural land and infrastructures, altering the hydraulic potential of soils, as well as water availability. Due to climate change, more areas are expected to be affected by gully erosion in the future, threatening especially low-income agricultural regions. In the past decades, quantitative methods have been proposed to simulate and predict gully erosion at different scales. However, gully erosion is still underrepresented in modern GIS-based modeling and simulation approaches. Therefore, this study aims to develop a QGIS plugin using Python to assess gully erosion dynamics. We explain the preparation of the input data, the modeling procedure based on Sidorchuk’s (Sidorchuk A (1999) Dynamic and static models of gully erosion. CATENA 37:401–414.) gully simulation model, and perform a detailed sensitivity analysis of model parameters. The plugin uses topographical data, soil characteristics and discharge information as gully model input. The plugin was tested on a gully network in KwaThunzi, KwaZulu-Natal, South Africa. The results and sensitivity analyses confirm Sidorchuck’s earlier observations that the critical runoff velocity is a main controlling parameter in gully erosion evolution, alongside with the slope stability threshold and the soil erodibility coefficient. The implemented QGIS plugin simplifies the gully model setup, the input parameter preparation as well as the post-processing and visualization of modelling results. The results are provided in different data formats to be visualized with different 3D visualization software tools. This enables a comprehensive gully assessment and the derivation of respective coping and mitigation strategies.

Funder

Hochschule für Technik Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3