Land use and land cover classification using machine learning algorithms in google earth engine
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Link
https://link.springer.com/content/pdf/10.1007/s12145-023-01073-w.pdf
Reference53 articles.
1. Attarchi S, Gloaguen R (2014) Classifying complex mountainous forests with L-band SAR and Landsat data integration: A comparison among different machine learning methods in the Hyrcanian Forest. Remote Sens 6(5):3624–3647. https://doi.org/10.3390/rs6053624
2. Batunacun N, Hu Y, Lakes T (2018) Land-use change and land degradation on the Mongolian plateau from 1975 to 2015—A case study from Xilingol, China. Land Degrad Dev 29(6):1595–1606. https://doi.org/10.1002/ldr.2948
3. Belgiu M, Drăguţ L (2016) Random forest in remote sensing: A review of applications and future directions. ISPRS J Photogramm Remote Sens 114:24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
4. Breiman, L (1984) Classification and regression trees (1st ed.). Routledge. https://doi.org/10.1201/9781315139470
5. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140. https://doi.org/10.1007/BF00058655
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Effects of localized development on land use and coastline dynamics: A focus on recent changes along the Lekki Peninsula;Regional Studies in Marine Science;2024-12
2. A comparative analysis of PlanetScope 4-band and 8-band imageries for land use land cover classification;Geomatica;2024-12
3. Machine learning in soil nutrient dynamics of alpine grasslands;Science of The Total Environment;2024-10
4. Analyzing urban footprints over four coastal cities of India and the association with rainfall and temperature using deep learning models;Urban Climate;2024-09
5. Assessing the impact of Land Use Land Cover changes on land surface temperature over Kigali, Rwanda in the past three decades;Environmental and Sustainability Indicators;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3