Satellite image retrieval of random forest (rf-PNN) based probablistic neural network

Author:

Bharatha Devi N.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Reference20 articles.

1. Ahirwar A (2013) Study of techniques used for medical image segmentation and computation of statistical test for region classification of brain MRI. IJ Inf Technol Comput Sci 5(5):44–53

2. Amruta A, Varade KS (2017) Brain tumor classification and segmentation using PNN & FCM Clustering. Int J Innov Res Comput Commun Eng 6(4)

3. Chiang T-W, Tsai T, Liu C-C(2005)Content-based image retrieval using block discrete cosine transform. In: Proceedings of The E-learning Environment and Mobil Networking Technology Symposium

4. Deng Y, Yu Y (2019)Self-feedback image retrieval algorithm based on annular color moments. EURASIP J Image Video Process 2019(1):7

5. Dharani T, Aroquiaraj IL (2013) Content based image retrieval system using feature classification with modified KNN algorithm. arXiv preprint arXiv:1307.4717

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Medical Remote Sensing and Internet of Things for Detection of Epileptic Seizure Using Deep Neural Networks;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

2. Detection and Classification of Satellite Remote Sensing Images Using Hybrid Segmentation and Feature Extraction with Effective Algorithms;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

3. Selective Aggregation of Deep Convolutional Features for Archeological Artifact Retreival;2024 12th International Electrical Engineering Congress (iEECON);2024-03-06

4. Electrocardiogram signal classification in an IoT environment using an adaptive deep neural networks;Neural Computing and Applications;2023-04-09

5. Detection of Plant Disease using ResNet framework in Comparison with Neural Network Classifier to Improve Classification Accuracy;2023 Eighth International Conference on Science Technology Engineering and Mathematics (ICONSTEM);2023-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3