Suitability of the height above nearest drainage (HAND) model for flood inundation mapping in data-scarce regions: a comparative analysis with hydrodynamic models

Author:

Thalakkottukara Navin Tony,Thomas Jobin,Watkins Melanie K.,Holland Benjamin C.,Oommen Thomas,Grover Himanshu

Abstract

AbstractUnprecedented floods from extreme rainfall events worldwide emphasize the need for flood inundation mapping for floodplain management and risk reduction. Access to flood inundation maps and risk evaluation tools remains challenging in most parts of the world, particularly in rural regions, leading to decreased flood resilience. The use of hydraulic and hydrodynamic models in rural areas has been hindered by excessive data and computational requirements. In this study, we mapped the flood inundation in Huron Creek watershed, Michigan, USA for an extreme rainfall event (1000-year return period) that occurred in 2018 (Father’s Day Flood) using the Height Above Nearest Drainage (HAND) model and a synthetic rating curve developed from LIDAR DEM. We compared the flood inundation extent and depth modeled by the HAND with flood inundation characteristics predicted by two hydrodynamic models, viz., HEC-RAS 2D and SMS-SRH 2D. The flood discharge of the event was simulated using the HEC-HMS hydrologic model. Results suggest that, in different channel segments, the HAND model produces different degrees of concurrence in both flood inundation extent and depth when compared to the hydrodynamic models. The differences in flood inundation characteristics produced by the HAND model are primarily due to the uncertainties associated with optimal parameter estimation of the synthetic rating curve. Analyzing the differences between the HAND and hydrodynamic models also highlights the significance of terrain characteristics in model predictions. Based on the comparable predictive capability of the HAND model to map flood inundation areas during extreme rainfall events, we demonstrate the suitability of the HAND-based approach for mitigating flood risk in data-scarce, rural regions.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3