Understanding the role of training sample size in the uncertainty of high-resolution LULC mapping using random forest

Author:

Phinzi Kwanele,Ngetar Njoya Silas,Pham Quoc Bao,Chakilu Gashaw Gismu,Szabó Szilárd

Abstract

AbstractHigh-resolution sensors onboard satellites are generally reputed for rapidly producing land-use/land-cover (LULC) maps with improved spatial detail. However, such maps are subject to uncertainties due to several factors, including the training sample size. We investigated the effects of different training sample sizes (from 1000 to 12,000 pixels) on LULC classification accuracy using the random forest (RF) classifier. Then, we analyzed classification uncertainties by determining the median and the interquartile range (IQR) of the overall accuracy (OA) values through repeated k-fold cross-validation. Results showed that increasing training pixels significantly improved OA while minimizing model uncertainty. Specifically, larger training samples, ranging from 9000 to 12,000 pixels, exhibited narrower IQRs than smaller samples (1000–2000 pixels). Furthermore, there was a significant variation (Chi2 = 85.073; df = 11; p < 0.001) and a significant trend (J-T = 4641, p < 0.001) in OA values across various training sample sizes. Although larger training samples generally yielded high accuracies, this trend was not always consistent, as the lowest accuracy did not necessarily correspond to the smallest training sample. Nevertheless, models using 9000–11,000 pixels were effective (OA > 96%) and provided an accurate visual representation of LULC. Our findings emphasize the importance of selecting an appropriate training sample size to reduce uncertainties in high-resolution LULC classification.

Funder

University of Zululand

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3