Combining deep learning methods and multi-resolution analysis for drought forecasting modeling
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Link
https://link.springer.com/content/pdf/10.1007/s12145-023-01009-4.pdf
Reference41 articles.
1. Balti, H, Abbes, AB, Mellouli, N, Sang, Y, Farah, IR, Lamolle, M, Zhu, Y (2021) Big data based architecture for drought forecasting using LSTM, ARIMA, and Prophet: Case study of the Jiangsu Province, China. In 2021 International Congress of Advanced Technology and Engineering (ICOTEN), 1–8. https://doi.org/10.1109/ICOTEN52080.2021.9493513
2. Bazrafshan J, Khalili A (2013) Spatial analysis of meteorological drought in Iran from 1965 to 2003. Desert 18(1):63–71. https://doi.org/10.22059/jdesert.2013.36276
3. Beguería S, Vicente-Serrano SM, Reig F, Latorre B (2014) Standardized precipitation Evaporation index (SPEI) revisited: parameter fitting, Evaporation models, tools, datasets and drought monitoring. Int J Climatol 34(10):3001–3023. https://doi.org/10.1002/joc.3887
4. Beguería S, Vicente-Serrano SM, Angulo-Martínez M (2010) A multiscalar global drought dataset: the SPEIbase: a new gridded product for the analysis of drought variability and impacts. Bulletin of the American Meteorological Society 91(10):1351–1354. http://www.jstor.org/stable/26233020. Accessed 12 Mar 2023
5. Che Z, Purushotham S, Cho K, Sontag D, Liu Y (2018) Recurrent neural networks for multivariate time series with missing values. Sci Rep 8(1):6085. https://doi.org/10.1038/s41598-018-24271-9
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Robust drought forecasting in Eastern Canada: Leveraging EMD-TVF and ensemble deep RVFL for SPEI index forecasting;Expert Systems with Applications;2024-12
2. Characterizing drought prediction with deep learning: A literature review;MethodsX;2024-12
3. Comparative analysis of SPI, SPEI, and RDI indices for assessing spatio-temporal variation of drought in Türkiye;Earth Science Informatics;2024-07-08
4. Deep learning-driven regional drought assessment: an optimized perspective;Earth Science Informatics;2024-02-13
5. Analysis, characterization, prediction, and attribution of extreme atmospheric events with machine learning and deep learning techniques: a review;Theoretical and Applied Climatology;2023-08-28
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3