Deep neural network modeling of river discharge in a tropical humid watershed
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s12145-023-01219-w.pdf
Reference59 articles.
1. Abolpour B, Javan M (2007) Optimization Model for Allocating Water in a River Basin during a Drought. J Irrig Drain Eng 133:559–572. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:6(559)
2. Aga AO, Melesse AM, Chane B (2020) An Alternative Empirical Model to Estimate Watershed Sediment Yield Based on Hydrology and Geomorphology of the Basin in Data-Scarce Rift Valley Lake Regions. Ethiopia Geosciences (basel) 10:31. https://doi.org/10.3390/geosciences10010031
3. Aghelpour P, Varshavian V (2020) Evaluation of stochastic and artificial intelligence models in modeling and predicting of river daily flow time series. Stoch Env Res Risk Assess 34:33–50. https://doi.org/10.1007/s00477-019-01761-4
4. Aksoy H, Dahamsheh A (2018) Markov chain-incorporated and synthetic data-supported conditional artificial neural network models for forecasting monthly precipitation in arid regions. J Hydrol (amst) 562:758–779. https://doi.org/10.1016/j.jhydrol.2018.05.030
5. Amaral S, Viseu T, Ferreira R (2019) Experimental methods for local-scale characterization of hydro-morphodynamic dam breach processes. Breach detection, 3D reconstruction, flow kinematics and spatial surface velocimetry. Flow Measurement and Instrumentation 70:101658. https://doi.org/10.1016/j.flowmeasinst.2019.101658
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine Learning Model for River Discharge Forecast: A Case Study of the Ottawa River in Canada;Hydrology;2024-09-12
2. Streamflow forecasting with deep learning models: A side-by-side comparison in Northwest Spain;Earth Science Informatics;2024-08-23
3. Experimental and deep neural network approaches on strength evaluation of ternary blended concrete;Construction and Building Materials;2024-08
4. Estimation of Soil Loss using Remote Sensing Data in a Regional Tropical Humid Catchment Area;Civil Engineering Journal;2024-07-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3