Author:
Hrysiewicz Alexis,Wang Xiaowen,Holohan Eoghan P.
Abstract
AbstractSatellite Interferometric Synthetic Aperture Radar (InSAR) is a space-borne geodetic technique that can map ground displacement at millimetre accuracy. Via the new era for InSAR applications provided by the Copernicus Sentinel-1 SAR satellites, several open-source software packages exist for processing SAR data. These packages enable one to obtain high-quality ground deformation maps, but still require a deep understanding of InSAR theory and the related computational tools, especially when dealing with a large stack of images. Here we present an open-source toolbox, EZ-InSAR (easy-to-use InSAR), for a user-friendly implementation of InSAR displacement time series analysis with multi-temporal SAR images. EZ-InSAR integrates the three most popular and renowned open-source tools (i.e., ISCE, StaMPS, and MintPy), to generate interferograms and displacement time series by using these state-of-art algorithms within a seamless Graphical User Interface. EZ-InSAR reduces the user’s workload by automatically downloading the Sentinel-1 SAR imagery and the digital elevation model data for the user’s area of interest, and by streamlining preparation of input data stacks for the time series InSAR analysis. We illustrate the EZ-InSAR processing capabilities by mapping recent ground deformation at Campi Flegrei (> 100 mm·yr−1) and Long Valley (~ 10 mm·yr−1) calderas with both Persistent Scatterer InSAR and Small-Baseline Subset approaches. We also validate the test results by comparing the InSAR displacements with Global Navigation Satellite System measurements at those volcanoes. Our tests indicate that the EZ-InSAR toolbox provided here can serve as a valuable contribution to the community for ground deformation monitoring and geohazard evaluation, as well as for disseminating bespoke InSAR observations for all.
Funder
Science Foundation Ireland Research Centre In Applied Geosciences
Interreg Atlantic Area Programme through the European Regional Development Fund
University College Dublin
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献