Logging curve prediction method based on CNN-LSTM-attention
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Link
https://link.springer.com/content/pdf/10.1007/s12145-022-00864-x.pdf
Reference26 articles.
1. Agga A, Abbou A, Labbadi M, Houm YE, Ali IHO (2022) CNN-LSTM: an efficient hybrid deep learning architecture for predicting short-term photovoltaic power production. Electr Power Syst Res 208. https://doi.org/10.1016/j.epsr.2022.107908
2. Alizadeh B, Najjari S, Kadkhodaie-Ilkhchi A (2012) Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: a case study of the south pars gas field, Persian gulf. Iran Comput Geosci-uk 45:261–269. https://doi.org/10.1016/j.cageo.2011.11.024
3. Antariksa G, Muammar R, Lee J (2022) Performance evaluation of machine learning-based classification with rock-physics analysis of geological lithofacies in Tarakan Basin. Indonesia J Petrol Sci Eng 208. https://doi.org/10.1016/j.petrol.2021.109250
4. Bahrpeyma F, Golchin B, Cranganu C (2013) Fast fuzzy modelling method to estimate miss-ing logs in hydrocarbon reservoirs. J Pet Sci Eng 112:310–321. https://doi.org/10.1016/j.petrol.2013.11.019
5. Cheng C, Gao Y, Chen Y, Jiao SX, Jiang YQ, Yi JZ, Zhang L (2022) Reconstruction method of old well logging curves based on BI-LSTM model-taking Feixianguan formation in East Sichuan as an example. Coatings 12(2). https://doi.org/10.3390/coatings12020113
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Online soft measurement method for chemical oxygen demand based on CNN-BiLSTM-Attention algorithm;PLOS ONE;2024-06-28
2. Logging curve reconstruction based on multivariate feature fusion of Attribute Co- occurrence Relationships and BiLSTM;2024-05-22
3. Pressure prediction for air cyclone centrifugal classifier based on CNN-LSTM enhanced by attention mechanism;Chemical Engineering Research and Design;2024-05
4. Application of the dynamic transformer model with well logging data for formation porosity prediction;Physics of Fluids;2024-03-01
5. Porosity prediction through well logging data: A combined approach of convolutional neural network and transformer model (CNN-transformer);Physics of Fluids;2024-02-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3