Author:
Mauricio-Álvarez Luis Eduardo,Aceves-Fernandez Marco Antonio,Pedraza-Ortega Jesús Carlos,Ramos-Arreguín Juan Manuel
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Barrero-González D, Ramírez-Montañez JA, Aceves-Fernández MA, Ramos-Arreguín JM (2021) Capability of an elman recurrent neural network for predicting the non-linear behavior of airborne pollutants. Earth Sci Inf. https://doi.org/10.1007/s12145-021-00707-1
2. Bartzis JG, Kalimeri KK, Sakellaris IA (2019) Environmental data treatment to support exposure studies: the statistical behavior for NO2, O3, PM10, and PM2.5 air concentrations in Europe. Environmental research. https://doi.org/10.1016/j.envres.2019.108864
3. Becerra-Rico J, Aceves-Fernández MA, Esquivel-Escalante K, Pedraza-Ortega JC (2020) Airborne particle pollution predictive model using gated recurrent unit (GRU) deep neural networks. Earth Sci Inf 13(3):821–834. https://doi.org/10.1007/s12145-020-00462-9
4. Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. John Wiley & Sons
5. Diederik P et al. (2014) A method for stochastic optimization. 3rd international conference for learning representations, san diego. arxiv:1412.6980