Carbonate reservoir characterization and permeability modeling using Machine Learning ـــ a study from Ras Fanar field, Gulf of Suez, Egypt

Author:

Khalid Mostafa S.,Mansour Ahmed S.,Desouky Saad El-Din M.,Afify Walaa S. M.,Ahmed Sayed F.,Elnaggar Osama M.

Abstract

AbstractPredicting facies and petrophysical properties along and between wells is challenging in carbonate reservoir modeling. In the Nullipore carbonate reservoir, Ras Fanar field, depositional and long-term diagenetic processes result in a high degree of heterogeneity and complex distribution of facies, which in turn affect the reservoir quality. This provides a significant obstacle to building accurate geological models. This study integrates thin sections, routine core analyses, and well logging data to overcome such difficulties and model the Nullipore carbonate facies and permeability. The detailed petrographic analysis revealed the existence of seven microfacies in the reservoir, which are summed up into three facies associations (FAs), each of which represents a specific reservoir rock type (RRT): (1) supratidal FA, (2) intertidal FA, and (3) shallow subtidal FA. The three FAs were correlated with the gamma-ray logs to create facies logs for the studied wells, which were further populated via the Truncated Gaussian Simulation method. Cross-validation was used to evaluate the model's accuracy. The analysis of the available core data infers that the three RRTs are prospective and have a wide permeability distribution. However, RRT3 constitutes the best reservoir quality. The sedimentological analysis revealed that the long-term diagenetic events, involving the dolomitization of limestone and the dissolution of allochems have a major role in improving the pore connectivity and permeability of the reservoir. Fracture characterization discloses that fractures play a significant role in fluid storage and migration. Three Machine Learning (ML) models, including Adaptive boosting (AdaBoost), Gradient Boosting (GB), and Extreme Gradient Boosting (XGB), were developed to integrate the RRTs, porosity, and permeability to improve permeability prediction. Statistical analysis revealed that the XGB model outperforms other models and exhibits the highest prediction performance. The present study provides further insights into the characterization and modeling of facies and permeability of complex carbonate reservoirs. It can be applied in similar geological settings to better interpretation of depositional and diagenetic controls on reservoir quality assessment and aid in the field development plan.

Funder

Egyptian Petroleum Research Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3