A novel method to improve vertical accuracy of CARTOSAT DEM using machine learning models
Author:
Funder
Ministry of Science and Technology India
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Link
https://link.springer.com/content/pdf/10.1007/s12145-020-00494-1.pdf
Reference51 articles.
1. Adamowski J, Karapataki C (2010) Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms. J Hydrol Eng 15:729–743. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000245
2. Ahmed K, Shahid S, Bin HS, Wang XJ (2015) Multilayer perceptron neural network for downscaling rainfall in arid region: a case study of Baluchistan, Pakistan. J Earth Syst Sci 124:1325–1341. https://doi.org/10.1007/s12040-015-0602-9
3. Ajvazi B, Czimber K (2019) A comparative analysis of different dem interpolation methods in gis: case study of rahovec, kosovo. Geod Cartogr 45:43–48. https://doi.org/10.3846/gac.2019.7921
4. Ali Ghorbani M, Khatibi R, Aytek A, Makarynskyy O, Shiri J (2010) Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks. Comput Geosci 36:620–627. https://doi.org/10.1016/j.cageo.2009.09.014
5. Alizadeh M, Ngah I, Hashim M, Pradhan B, Pour A (2018) A hybrid analytic network process and artificial neural network (ANP-ANN) model for urban earthquake vulnerability assessment. Remote Sens 10(6):975. https://doi.org/10.3390/rs10060975
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An adaptive low‐rank group sparse model based on edge‐preserving for eliminating mixed noise in SRTM;Earth Surface Processes and Landforms;2024-09-04
2. Comparison of machine learning and statistical approaches for Digital Elevation Model (DEM) correction: interim results;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2024-06-11
3. Assessment of explainable tree-based ensemble algorithms for the enhancement of Copernicus digital elevation model in agricultural lands;International Journal of Image and Data Fusion;2024-04-12
4. A hybrid machine learning-based multi-DEM ensemble model of river cross-section extraction: Implications on streamflow routing;Journal of Hydrology;2023-10
5. SRTM DEM Correction Using Ensemble Machine Learning Algorithm;Remote Sensing;2023-08-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3