Comparative assessment of surface soil moisture simulations by the coupled wcm-iem vs. data-driven models using the Sentinel 1 and 2 satellite images
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Link
https://link.springer.com/content/pdf/10.1007/s12145-023-00987-9.pdf
Reference63 articles.
1. Alexakis DD, Mexis F-DK, Vozinaki A-EK, Daliakopoulos IN, Tsanis IK (2017) Soil moisture content estimation based on Sentinel-1 and auxiliary earth observation products. A hydrological approach. Sensors 17(6):1455
2. Álvarez-Mozos J, Casalí J, González-Audícana M, Verhoest NEC (2006) Assessment of the operational applicability of RADARSAT-1 data for surface soil moisture estimation. IEEE Trans Geosci Remote Sens 44(4):913–924
3. Attema EPW, Ulaby FT (1978) Vegetation modeled as a water cloud. Radio Sci 13(2):357–364
4. Awad M, Khanna R (2015) Efficient learning machines: theories, concepts, and applications for engineers and system designers. Springer Nature, Berlin
5. Baghdadi N, Gherboudj I, Zribi M, Sahebi M, King C, Bonn F (2004) Semi-empirical calibration of the IEM backscattering model using radar images and moisture and roughness field measurements. Int J Remote Sens 25(18):3593–3623
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Differentiable modeling for soil moisture retrieval by unifying deep neural networks and water cloud model;Remote Sensing of Environment;2024-09
2. Triple coupling random forest approach for bias correction of ensemble precipitation data derived from Earth system models for Divandareh‐Bijar Basin (Western Iran);International Journal of Climatology;2024-04-17
3. Fusion of Machine Learning and Semi-Empirical Models for Cooperative Retrieval of Soil Moisture With Optical and SAR Remote Sensing: Cyclic or Parallel?;IEEE Geoscience and Remote Sensing Letters;2024
4. A stochastic deep-learning-based approach for improved streamflow simulation;Stochastic Environmental Research and Risk Assessment;2023-09-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3