Cognitive reserve, depressive symptoms, obesity, and change in employment status predict mental processing speed and executive function after COVID-19

Author:

Ariza Mar,Béjar JavierORCID,Barrué Cristian,Cano Neus,Segura Bàrbara, ,Bernia Jose A,Arauzo Vanesa,Balague-Marmaña Marta,Pérez-Pellejero Cristian,Cañizares Silvia,Muñoz Jose Antonio Lopez,Caballero Jesús,Carnes-Vendrell Anna,Piñol-Ripoll Gerard,Gonzalez-Aguado Ester,Riera-Pagespetit Mar,Forcadell-Ferreres Eva,Reverte-Vilarroya Silvia,Forné Susanna,Muñoz-Padros Jordina,Bartes-Plan Anna,Muñoz-Moreno Jose A.,Prats-Paris Anna,Pons Inmaculada Rico,Molina Judit Martínez,Casas-Henanz Laura,Castejon Judith,Mas Maria José Ciudad,Jodrà Anna Ferré,Lozano Manuela,Garzon Tamar,Cullell Marta,Vega Sonia,Alsina Sílvia,Maldonado-Belmonte Maria J.,Vazquez-Rivera Susana,García-Cabello Eloy,Molina Yaiza,Navarro Sandra,Baillès Eva,Cortés Claudio Ulises,Junqué Carme,Garolera MaiteORCID

Abstract

AbstractThe risk factors for post-COVID-19 cognitive impairment have been poorly described. This study aimed to identify the sociodemographic, clinical, and lifestyle characteristics that characterize a group of post-COVID-19 condition (PCC) participants with neuropsychological impairment. The study sample included 426 participants with PCC who underwent a neurobehavioral evaluation. We selected seven mental speed processing and executive function variables to obtain a data-driven partition. Clustering algorithms were applied, including K-means, bisecting K-means, and Gaussian mixture models. Different machine learning algorithms were then used to obtain a classifier able to separate the two clusters according to the demographic, clinical, emotional, and lifestyle variables, including logistic regression with least absolute shrinkage and selection operator (LASSO) (L1) and Ridge (L2) regularization, support vector machines (linear/quadratic/radial basis function kernels), and decision tree ensembles (random forest/gradient boosting trees). All clustering quality measures were in agreement in detecting only two clusters in the data based solely on cognitive performance. A model with four variables (cognitive reserve, depressive symptoms, obesity, and change in work situation) obtained with logistic regression with LASSO regularization was able to classify between good and poor cognitive performers with an accuracy and a weighted averaged precision of 72%, a recall of 73%, and an area under the curve of 0.72. PCC individuals with a lower cognitive reserve, more depressive symptoms, obesity, and a change in employment status were at greater risk for poor performance on tasks requiring mental processing speed and executive function. Study registration:www.ClinicalTrials.gov, identifier NCT05307575.

Funder

Agència de Gestió d'Ajuts Universitaris i de Recerca

Fundació la Marató de TV3

Ministerio de Ciencia e Innovación

Universitat Politècnica de Catalunya

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3