Prevalence and prediction of dropout during depression treatment in routine outpatient care: an observational study

Author:

van Dijk D. A.ORCID,Deen M. L.,van den Boogaard Th. M.,Ruhé H. G.,Spijker J.,Peeters F. P. M. L.

Abstract

AbstractEfficacious treatments are available for major depressive disorder (MDD), but treatment dropout is common and decreases their effectiveness. However, knowledge about prevalence of treatment dropout and its risk factors in routine care is limited. The objective of this study was to determine the prevalence of and risk factors for dropout in a large outpatient sample. In this retrospective cohort analysis, routinely collected data from 2235 outpatients with MDD who had a diagnostic work-up between 2014 and 2016 were examined. Dropout was defined as treatment termination without achieving remission before the fourth session within six months after its start. Total and item scores on the Dutch Measure for Quantification of Treatment Resistance in Depression (DM-TRD) at baseline, and demographic variables were analyzed for their association with dropout using logistic regression and elastic net analyses. Data of 987 subjects who started routine outpatient depression treatment were included in the analyses of which 143 (14.5%) dropped out. Higher DM-TRD-scores were predictive for lower dropout odds [OR = 0.78, 95% CI = (0.70–0.86), p < 0.001]. The elastic net analysis revealed several clinical variables predictive for dropout. Higher SES, higher depression severity, comorbid personality pathology and a comorbid anxiety disorder were significantly associated with less dropout in the sample. In this observational study, treatment dropout was relatively low. The DM-TRD, an easy-to-use clinical instrument, revealed several variables associated with less dropout. When applied in daily practice and combined with demographical information, this instrument may help to reduce dropout and increase treatment effectiveness.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Biological Psychiatry,Psychiatry and Mental health,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3