Toxicity of persistent organic pollutants: a theoretical study

Author:

Martínez Ana

Abstract

Abstract Context Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are two families of persistent organic pollutants that are dangerous as they remain in the atmosphere for long periods and are toxic for humans and animals. They are found all over the world, including the penguins of Antarctica. One of the mechanisms that explains the toxicity of these compounds is related to oxidative stress. The main idea of this theoretical research is to use conceptual density functional theory as a theory of chemical reactivity to analyze the oxidative stress that PCBs and PBDEs can produce. The electron transfer properties as well as the interaction with DNA nitrogenous bases of nine PCBs and ten PBDEs found in Antarctic penguins are investigated. From this study, it can be concluded that compounds with more chlorine or bromine atoms are more oxidizing and produce more oxidative stress. These molecules also interact directly with the nitrogenous bases of DNA, forming hydrogen bonds, and this may be an explanation for the toxicity. Since quinone-type metabolites of PCBs and PBDEs can cause neurotoxicity, examples of quinones are also investigated. Condensed Fukui functions are included to analyze local reactivity. These results are important as the reactivity of these compounds helps to explain the toxicity of PCBs and PBDEs. Methods All DFT computations were performed using Gaussian16 at M06-2x/6–311 + g(2d,p) level of theory without symmetry constraints. Electro-donating (ω-) and electro-accepting (ω +) powers were used as global response functions and condensed Fukui functions as local parameters of reactivity.

Funder

DGAPA-PASPA scholarship

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3