A semiempirical method optimized for modeling proteins

Author:

Stewart James J. P.ORCID,Stewart Anna C.

Abstract

Abstract Context In recent years, semiempirical methods such as PM6, PM6-D3H4, and PM7 have been increasingly used for modeling proteins, in particular enzymes. These methods were designed for more general use, and consequently were not optimized for studying proteins. Because of this, various specific errors have been found that could potentially cast doubt on the validity of these methods for modeling phenomena of biochemical interest such as enzyme catalytic mechanisms and protein-ligand interactions. To correct these and other errors, a new method specifically designed for use in organic and biochemical modeling has been developed. Methods Two alterations were made to the procedures used in developing the earlier PMx methods. A minor change was made to the theoretical framework, which affected only the non-quantum theory interatomic interaction function, while the major change involved changing the training set for optimizing parameters, moving the focus to systems of biochemical significance. This involved both the selection of reference data and the weighting factors, i.e., the relative importance that the various data were given. As a result of this change of focus, the accuracy in prediction of heats of formation, hydrogen bonding, and geometric quantities relating to non-covalent interactions in proteins was improved significantly.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3