Abstract
AbstractThis work examines the suitability of meta-GGA functionals for symmetry-adapted perturbation theory (SAPT) calculations. The assessment is based on the term-by-term comparison with the benchmark SAPT variant based on coupled-cluster singles and doubles description of monomers, SAPT(CCSD). Testing systems include molecular complexes ranging from strong to weak and the He dimer. The following nonempirical meta-GGAs are examined: TPSS, revTPSS, MVS, SCAN, and SCAN0 with and without the asymptotic correction (AC) of the exchange-correlation potential. One range-separated meta-GGA functional, LC-PBETPSS, is also included. The AC-corrected pure meta-GGAs (with the exception of MVS) represent a definite progress in SAPT(DFT) compared to pure GGA, such as PBEAC, with their more consistent predictions of energy components. However, none of the meta-GGAs is better than the hybrid GGA approach SAPT(PBE0AC). The SAPT(DFT) electrostatic energy offers the most sensitive probe of the quality of the underlying DFT density. Both SCAN- and TPSS-based electrostatic energies agree with reference to within 5% or better which is an excellent result. We find that SCAN0 can be used in SAPT without the AC correction. The long-range corrected LC-PBETPSS is a reliable performer both for the components and total interaction energies.
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献