Abstract
AbstractDiketene (4-methylideneoxetan-2-one) is a precursor to the formation of either two molecules of ketene, or allene and CO2 using pyrolysis techniques. It is not known experimentally which of these pathways is followed, or indeed if both are, during the dissociation process. We use computational methods to show that the formation of ketene has a lower barrier than formation of allene and CO2 under standard conditions (by 12 kJ/mol). According to CCSD(T)/CBS, CBS-QB3 and M06-2X/cc-pVTZ calculations the formation of allene and CO2 is favoured thermodynamically under standard conditions of temperature and pressure; however, kinetically the formation of ketene is favoured from transition state theory calculations at standard and elevated temperatures.
Graphical abstract
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献