Abstract
AbstractDirect NDDO-based Born-Oppenheimer molecular dynamics (MD) have been implemented in the semiempirical molecular orbital program EMPIRE. Fully quantum mechanical MD simulations on unprecedented time and length scales are possible, since the calculation of self-consistent wavefunctions and gradients is performed in a massively parallel manner. MD simulations can be performed in the NVE and NVT ensembles, using either deterministic (Berendsen) or stochastic (Langevin) thermostats. Furthermore, dynamics for condensed-phase systems can be performed under periodic boundary conditions. We show three exemplary applications: the dynamics of molecular reorganization upon ionization, long timescale dynamics of an endohedral fullerene, and calculation of the vibrational spectrum of a nanoparticle consisting of more than eight hundred atoms.
Funder
Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Catalysis
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献