Computational study of the relative stability of some glass-ionomer cement-forming molecules

Author:

Gaviria JairORCID,Quijano Silvia,Quijano Jairo,Ruiz Pablo

Abstract

AbstractThis work is part of a larger study whose main objective was to find a series of promising molecules to be used as glass-ionomer-type materials. The project was divided into 3 successive stages; the results of the first stage have been previously published and were used to continue the study. The molecules evaluated in the second stage were constructed by adding a glycidyl methacrylate molecule to the carboxylic groups of the polyacids selected in the previous stage. The modeling was done using the density functional theory for M06-2X/6-311G(d,p). The results indicate that the addition over the carboxylic groups of the fraction of the molecule, corresponding to itaconic acid, is thermodynamically favored. The final stage was modeled with the M06 functional and consisted of obtaining basic structures of glass-ionomer-type materials, by acid–base reaction between the molecules resulting from the second stage with individual ions of Ca (2 +), Zn (2 +), or Al (+ 3). It was concluded that aluminum atoms generate more compact structures that would correlate with more resistant materials.

Funder

National University of Colombia

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3