Adsorption of lanthanide double-decker phthalocyanines on single-walled carbon nanotubes: structural changes and electronic properties as studied by density functional theory

Author:

Bolívar-Pineda Lina M.ORCID,Mendoza-Domínguez Carlos UrielORCID,Basiuk Vladimir A.ORCID

Abstract

Abstract Context Molecular modeling of carbon nanotubes and lanthanide double-decker phthalocyanines hybrids is challenging due to the presence of 4f-electrons. In this paper, we analyzed the trends in structural changes and electronic properties when a lanthanide (La, Gd, and Lu) bisphthalocyanine molecule is adsorbed on the surface of two single-walled carbon nanotubes (SWCNTs) models: armchair and zigzag. The density functional theory (DFT) computations showed that the height of bisphthalocyanines complexes (LnPc2) when adsorbed on a nanotube (LnPc2+SWCNT) is the structural feature which is most affected by the nanotube model. The formation energy of the LnPc2+SWCNT hybrid depends on the metal atom and the nanotube chirality. LaPc2 and LuPc2 bind stronger to the zigzag nanotube, while for GdPc2, bonding to the armchair nanotube is the stronger one. The HOMO-LUMO gap energy (Egap) shows a correlation between the nature of lanthanide and the nanotube chirality. In the case of adsorption on armchair nanotube, Egap tends to match the gap of isolated LnPc2, whereas for adsorption on the zigzag nanotube, it is closer to the value for the isolated nanotube model. The spin density is localized on the phthalocyanines ligands (plus on Gd in the case of GdPc2), when the bisphthalocyanine is adsorbed on the surface of the armchair nanotube. For bonding to zigzag nanotube (ZNT), it extends over both components, except for LaPc2+ZNT, where spin density is found on the nanotube only. Method All DFT calculations were carried out using the DMol3 module of Material Studio 8.0 software package from Accelrys Inc. The computational technique chosen was the general gradient approximation functional PBE in combination with a long-range dispersion correction developed by Grimme (PBE-D2), the double numerical basis set DN, and the DFT semi-core pseudopotentials.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3